Early View 2403042
Research Article

Flower-Like Nanosensors for Photoacoustic-Enhanced Lysosomal Escape and Cytoplasmic Marker-Activated Fluorescence: Enabling High-Contrast Identification and Photothermal Ablation of Minimal Residual Disease in Breast Cancer

Lin Li

Lin Li

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

Search for more papers by this author
Yuxin Xing

Yuxin Xing

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

Search for more papers by this author
Yuhua Chen

Yuhua Chen

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

Search for more papers by this author
Kunlin Li

Kunlin Li

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

Search for more papers by this author
Yunyun Wu

Yunyun Wu

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

Search for more papers by this author
Kaiyong Cai

Kaiyong Cai

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

Search for more papers by this author
Lu Wang

Corresponding Author

Lu Wang

Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, Zhejiang, 310014 China

School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No.8 Yikang Road, Hangzhou, Zhejiang, 311399 China

E-mail: wanglu622@hmc.edu.cn; jixizhang@cqu.edu.cn

Search for more papers by this author
Jixi Zhang

Corresponding Author

Jixi Zhang

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044 China

E-mail: wanglu622@hmc.edu.cn; jixizhang@cqu.edu.cn

Search for more papers by this author
First published: 24 November 2024

Abstract

The clearance of minimal residual disease (MRD) after breast cancer surgery is crucial for inhibiting metastasis and recurrence. However, the most promising biomarker-activated fluorescence imaging strategies encounter accessibility issues of the delivered sensors to cytoplasmic targets. Herein, a flower-like composite nanosensor with photoacoustic (PA) effect-enhanced lysosomal escape and cytoplasmic marker-activated fluorescence is developed to address this challenge. Specifically, the incorporation of Co2+ into the synthesis of 2D Zn2+-derived metal–organic frameworks enabled rapid dopamine polymerization and deposition. Subsequently, the composite nanoflower (FHN), characterized by an average size of ≈80 nm and petal thickness of ≈6 nm, is formed through the sealing of micropores and simultaneous cross-linking of nanosheets. The pronounced reduction in thermal conductivity of FHN, and superposition of interpetal thermal fields under a pulsed laser (PL), lead to enhanced PA effect and membrane permeability. Thereby, nanosensors efficiently escape from lysosomes resulting in synergistic fluorescence activation by dual-factors (ATP, miRNA-21) and DNA probes installed on FHN. A subsequently high tumor-to-normal tissue signal ratio (TNR) of 17.4 lead to precise guidance of NIR irradiation for efficient MRD eradication and recurrence inhibition. This study provides a new approach for high-contrast identification and precise ablation of MRD based on the synergistic response of endogenous and exogenous factors.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.